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A theoretical model is presented that describes the interaction of frequency components in arbitrary
pulsed elastic waves during one-dimensional propagation in an infinite medium with extreme
nonlinear response. The model is based on one-dimensional Green’s function theory in combination
with a perturbation method, as has been developed for a general source function by McCall@J.
Geophys. Res.99 ~B2!, 2591–2600~Feb. 1994!#. A polynomial expansion of the equation of state
is used in which four orders of nonlinearity in the moduli are accounted for. The nonlinear wave
equation is solved for the displacement field at distancex from a symmetric ‘‘breathing’’ source
with arbitrary Fourier spectrum imbedded in an infinite medium. The perturbation expression
corresponds to a higher-order equivalent of the Burgers’ equation solution for velocity fields in
solids. The solution is implemented numerically in an iterative procedure which allows one to
include an arbitrary attenuation function. Energy conservation is investigated in the absence of
~linear! attenuation, and the notion of a hybrid~linear and nonlinear! dissipation is illustrated.
Examples are provided showing the effect of each term in the perturbation solution on the spectral
content of the waveform. Finally, the possibility of creating a parametric array for seismic
exploration is briefly considered from a theoretical point of view. ©1996 Acoustical Society of
America.

PACS numbers: 43.25.Dc

INTRODUCTION

It is well established that the elastic nonlinear response
in some materials is extremely large. Rock in particular dis-
plays an enormous nonlinear response and this has been
documented in many studies.1–4 Elastic nonlinearity causes
frequency components to mix and energy to be transferred
from fundamental frequencies to sum and difference fre-
quencies along the wave propagation path well away from an
acoustic or elastic wave source. Traditionally, a perturbation
expansion of the equation of state including one nonlinear
term has been incorporated into the wave equation to de-
scribe this behavior.5,6 This is the approach of nonlinear
acoustics where nonlinear response is generally small rela-
tive to materials such as rock.6,7 However, our work and the
work of others has shown that the elementary traditional
theory does not describe observations well, or in some in-
stances, not at all.8,9 Our group is in the process of testing
several revised or entirely new theoretical approaches. The
two primary approaches are,~1! expanding the equation of
state to higher order than is traditionally done, and~2! appli-
cation of a discontinuous equation of state. The second ap-
proach is described in several papers.8–10 The first approach
is the topic of this paper. Back in 1975, Tiersten11 presented
the nonlinear constitutive equations for an isotropic purely
elastic solid containing terms up to cubic in the small me-
chanical displacement gradients. Rather than going over the

intense algebra again, we assume the equation of state can be
approximated by a higher-order power law expansion of
stress as a function of strain.

A. Traditional approach

In this paper we first focus on the effects of elastic non-
linearity, and include attenuation in a later stage. Using the
Lagrangian coordinatex and timet, Thurston and Shapiro12

expressed the differential equation of motion for single mode
sound wave propagation in a nonlinear one-dimensional in-
finite solid in terms of particle displacementu and strain
e5]u/]x as

r0
]2u

]t2
5M2F11b

]u

]x
1dS ]u

]xD
2

1••• G ]2u

]x2
. ~1!

Here r0 denotes the unstrained density specific for the me-
dium, b5M3/M2 and d5M4/M2 , with M2, M3, andM4
being, respectively, linear combinations of second-order
elastic constants, second- and third-order constants, and
second-, third-, and fourth-order constants in the direction of
propagation. Equation~1! clearly illustrates the hypothesis of
a nonlinear modulus-strain relation~or velocity-strain rela-
tion since the linear velocity is commonly defined asc0
5 AM2 /r0! expressed as a power series ine. Thurston and
Shapiro applied a Fourier series expansion of the particle
velocity in the simple wave region to obtain an expression
for the particle displacementu at distancex assuming an
initially pure sinusoidal wave. More recently McCall13 ob-
tained the same theoretical result using a 1-D power law
expansion of stress~s! versus strain and solving following
nonlinear elastic wave equation by use of Green’s function
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theory in combination with perturbation methods

r0
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]t2
5
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]x
1S~x,t !, ~2a!

with

s~e!5M2e~11b8e1d8e21••• !
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]x F11b8
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1d8S ]u
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andS(x,t) being the driver.
The difference between Eqs.~1! and ~2! is the identifi-

cation ofb as 2b8 andd as 3d8. The advantage of McCall’s
procedure using Green’s function theory is that the solution
can be written in semianalytical form for any arbitrary source
functionS(x,t).13,14

For most solids the solution of the above equations lim-
ited to the first nonlinear term is sufficient to describe their
nonlinear response, i.e., only the term inb is needed. The
value of the first nonlinearity parameter can be experimen-
tally obtained from a measurement of the amplitudeA2 of the
second harmonic displacement~2v! generated at a distancex
from a pure tone~single frequency! source signal

b5
8A2c0

2

A1
2v2x

, ~3!

wherev is the angular frequency andA1 is the amplitude of
the fundamental frequency.

In some materials it appears that higher-order terms
must be employed in order to describe the complete nonlin-
ear response including higher-order harmonics. Some ceram-
ics can be described in this manner.15–16Based on perturba-
tion theory, including higher-order nonlinearity~d term! in
the nonlinear equation is not necessary when the amplitude
A3 of the third harmonic~3v! approximately satisfies

A3'
b2A1

3v4x2

32c0
4 . ~4!

The presence of third harmonic amplitudes for which Eq.~4!
is not satisfied may mean that fourth- and perhaps even
higher-order elastic coefficients must be taken into account,
or that an alternative model with a discontinuous state rela-
tion must be considered as mentioned above. A recent study
suggests that non-negligible fourth-order elastic coefficients
can model the extreme nonlinear behavior in the case of PZT
ceramics.15–16Na and Breazeale15 reported ab value of 1500
for PZT ceramics at the Curie temperature and their mea-
sured third harmonic amplitudes at room temperature were
orders of magnitude larger than predicted by Eq.~4!. The
same approach may also model the large nonlinear response
in Earth materials.14,17,18Earth materials are an extreme ex-
ample of disordered media in which the effective moduli
change dramatically as a function of stress due to the pres-
ence of compliant features such as microcracks and grain
boundaries. Elastic resonance18 and static stress-strain
experiments19,20 suggest that the ratio of third-order elastic
constants to second-order elastic constants in rocks is several
orders of magnitude higher than in the case of ordinary ma-

terials. Measured values for the first nonlinearity parameterb
range from 102 to 104 whereas typical values between 3 and
15 are observed for most crystalline solids. The observed
values forb and the large amplitudes of higher harmonics
observed in rock,17–18suggest that higher-order elastic coef-
ficients may play an important role. Therefore, if a power
law expansion of stress versus strain is a valid assumption, at
least thed term must be taken into consideration in the de-
scription of the stress-strain relation for these materials. In
this paper we carry out the perturbation expansion including
four orders of nonlinearity in the equation of state. In a com-
panion paper~Part II! we compare theoretical to observed
results.

Creating a single frequency plane wave source in an
experiment is not necessarily straightforward. In order to
minimize diffraction effects our group has performed experi-
ments on cylindrical cores using a drive transducer of iden-
tical diameter as the core. Pure Young’s mode propagation at
a single frequency is sought. However, source effects may
introduce harmonic distortion of the initial signal. In addi-
tion, it is known that the Young’s mode in a bar requires
some time~or equivalently, some distance! to fully develop
its characteristics. Within the distance in which the mode is
established in highly nonlinear materials like rock, it may
develop a rich harmonic spectrum. In order to account for
multiple frequency components in the source we applied the
Green’s function procedure, developed by McCall, to deter-
mine the waveform expression at distancex from a source
consisting of an arbitrary pulsed source spectrum. This ex-
pression corresponds to a higher-order equivalent of the Bur-
gers’ equation solution for velocity fields in solids. It has
conceptual clarity and is easy to implement numerically.
Analysis of the harmonic content generated along the wave
propagation path in the case of a symmetrical source func-
tion, and the influence of each term in the power law expan-
sion of the stress-strain relation is illustrated.

Because the general expression is obtained using pertur-
bation theory, it is restricted in its analytical form to small
distances from the source. For large distances, the distortion
must be calculated in an iterative manner. This will be shown
in more detail. Numerical examples will be provided for dif-
ferent numbers of iteration steps showing the convergence of
the distorted frequency spectrum as the iteration distance be-
comes small. From this procedure it will also be shown that
rich harmonic spectra can be predicted even if only a mini-
mum number of nonlinearity parameters are taken into ac-
count. In addition, the procedure allows us to include any
dissipation function accounting for linear attenuation at each
iteration step. Finally, the iteration procedure provides a
means of accounting for energy conservation in the absence
of attenuation. Because nonlinear elasticity implies that en-
ergy is transferred between frequency components, we also
investigate the notion of ‘‘elastically nonlinear’’ attenuation
versus ‘‘elastically linear’’ attenuation.

The theoretical framework has a number of potential
applications. Apart from a pure characterization and classifi-
cation of the degree of elastic nonlinearity for both normal
and disordered solids, we are interested in the sensitivity of
nonlinear contributions along the propagation path as a way
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of interrogating the compliant nature of the material, such as
measurement of consolidation and saturation as well as for
symptoms of fatigue or damage. In the case of seismic events
in the earth, such as explosions and earthquakes, we seek
corrections to the spectrum of seismic waves received at
large distances from the source for which we believe that
energy is transferred about the spectrum as a function of
propagation distance.14,21Also the construction of a paramet-
ric array in analogy with underwater sound exploration22–23

is of interest to seismic surveys for directed transmission
over a long path length.

I. THEORY

The following theoretical discussion is based on Green’s
function theory in combination with perturbation analysis as
elaborated on in detail by McCall.13 The one-dimensional
nonlinear equation of motion for the displacement field can
be obtained by representing stress~s! as a polynomial ex-
pansion in strain~e!. The present study takes into account
four orders of nonlinearity in this expansion. The resulting
one-dimensional nonlinear equation in Lagrangian coordi-
natex and timet then takes the form

1

c0
2

]2u

]t2
5

]

]x F]u]x S 11b8
]u

]x
1d8S ]u

]xD
2

1h8S ]u

]xD
3

1j8S ]u

]xD
4

••• D G1S~x,t !, ~5!

in which u is the particle displacement,c0 is the linear ve-
locity, S(x,t) is the expression for the source function, and

b8, d8, h8, andj8 are the nonlinear parameters. We apply the
prime notation in the stress-strain expansion coefficients in
order to make the distinction between the more common
modulus-strain relation of Thurston and Shapiro. Geophysi-
cists prefer to think in terms of stress whereas velocity is the
more favorable terminology in acoustics.

By use of the Green’s function

G~x,x8,v!52
ei ~v/c0!ux2x8u

2i ~v/c0!
, ~6!

for an infinite medium associated with the linear problem,
McCall showed that the displacement spectrum at a distance
x from the source can be expressed in semianalytical integral
form. Applying the same method to Eq.~5! the Fourier trans-
form of the displacement field is given by

u~x,v!5u~0!~x,v!1u~1!~x,v!1u~2!~x,v!1u~3!~x,v!

1u~4!~x,v!, ~7!

where
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andu(n) can be calculated by successive approximations, i.e.,
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and
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We are particularly interested in the response of the displace-
ment field at some distance from a source that consists of an
arbitrary train of pulsed elastic waves. This will allow us to
ignore the near-field effects, and to use the waveform at any
position outside the near field as a source input in our model.
Because most sources emit some harmonic energy, this ap-
proach is also very useful for analyzing the effects of har-
monic source distortion on nonlinear wave propagation.

Conforming with our ongoing pulse experiments, we
consider the case of a ‘‘breathing’’ mode source where the
source expands symmetrically about its vertical axis@i.e.,
u(2x,t)52u(x,t)#. The Fourier transform of the source
function in this case can be written as follows:

S̃~x,v!522
]@d̂~x!#

]x
2p (

n52`

1`

Und̂~v2nv0! ~9!

in which Un5[U2n] * is a complex number describing the
amplitudeAn and phasefn of the nth harmonic displace-
ment component atx50, i.e.,Un 5 2( i /2)Ane

ifn, andd̂(x)
is the delta distribution function.

Introducing the source function@Eq. ~9!# into Eq. ~8a!
and working through the immense job of analytically calcu-
lating the integrals 8a, c–f we find a general expression de-
scribing the harmonic distortion of a pulsed signal propa-
gated over a distancex in an elastic nonlinear medium. In
terms of the particle velocity Vn52 inv0Un

52n(v0/2)An exp[ifn], the perturbation solution for each
frequency component is given by
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where n, l 1, l 2, l 3, and l 4 refer to a particular frequency
component and to summations indices. Note thatWk denotes
the interaction weighting function for the~k11!-fold fre-
quency component interactions. For conciseness we include
only the explicit expressions for the functionsW1 andW2:

W1~n,l 1!5
b8

2c0
2 uxu, ~11a!

W2~n,l 1 ,l 2!5
i

2c0
3 H Fd82

b82

2 S 2n1 l 11 l 2
n D G uxu

2 i
~ l 11 l 2!v0

c0

b82

2
uxu2J . ~11b!

The weighting functionsW3 andW4 ~and any higher order
interaction weighting function! can be calculated using the
general formula described in the Appendix. Their leading
terms start with terms that are linear with distance and pro-
portional toh8 andj8, respectively.

Equation~10! corresponds to a higher order equivalent
of the Burgers’ equation solution for particle velocity fields
in solids.24–26 The five parts in this equation correspond to
the five terms for each frequency component of the particle
velocity distortion over a distancex @equivalent to Eq.~7!#.
The first term is the unperturbed frequency component that
can be modified by dissipation, introduced in anad hocman-
ner because there is no attenuation present in the considered
nonlinear wave equation. Here we used the common expo-
nential decaying function in whichQL is a frequency-
independent measure of the linear attenuation. All other
terms are identified with elastic nonlinear interactions be-
tween frequency components and can be considered as cor-
rections to the linear wave propagation theory. Generally the
Burger’s equation accounts only for interactions between
two frequency components@corresponding to the second
term in Eq.~7!#, whereas the use of Eq.~10! models direct
energy mixing between up to five harmonics over the same
distance.

II. EXAMPLES AND DISCUSSION

The range of parameters and dimensions used in the
illustrations in this paper is inspired by experiments on rock
samples performed by our group. Typically, Young’s mode
velocity ranges between 1800 and 2600 m/s, fundamental
frequencies are 5 to 50 kHz, displacement amplitudes range
from 1029 to 1026 m ~strains of 2.431028 to 6.631025!,
distances extend to 2.0 m and the linear attenuation param-
eterQL varies from 10 to 200. The first and second nonlin-
earity parameters~b8 andd8! have been found to range any-
where between 10 and 104 for b8 and between 103 and 109

for d8 based on experimental observations. No experimental
evidence has been considered concerning the importance and
the values of the higher-order nonlinear parametersh8 and
j8. However, in some cases large harmonics can be observed
out to at least the tenth harmonic, 10v.

In almost all illustrations that will be shown, displace-
ment of one~or more! frequency component~s! is used as the
dependent variable. The numerical implementation first con-
verts initial displacement values to velocity, then calculates

the distortion for each frequency component over a propaga-
tion distancex using Eq.~10!, and finally converts distorted
velocity back to displacement. We define the order of ap-
proximation of the perturbation technique as the number of
nonlinear terms taken into account in the calculation of Eq.
~7!. Note that themth-order approximation takes into ac-
count no more thanm orders of nonlinearity, for instance, a
second order approximation technique reflects influences of
b8 andd8 provided these have nonzero values.

In the following we discuss:~1! the implementation of
the perturbation solution using an iterative technique and the
effects of the iterations on the solution;~2! the influence of
source distortion;~3! the effects of the level of approxima-
tion used in the perturbation model and the influence of the
nonlinearity parameters;~4! the introduction of attenuation
and the notion of a local hybridQ value;~5! the conservation
of energy requirement;~6! and some applications. The pa-
rameters used as input in the theoretical model are listed in
each figure caption.

A. Implementation of the perturbation solution using
an iterative technique

Because the general expression is obtained using pertur-
bation theory, it is restricted in its analytical form to small
distancesx from the source. For large distancesL, the dis-
tortion must be calculated by iterative procedure.27 Rather
than calculating the distortion directly at a large propagation
distanceL, we divide the total distanceL into N intervals,
each of lengthx5L/N. The calculated signal at the begin-
ning of each interval is used as the source for the computa-
tion of the waveform and spectrum propagating over the next
interval L/N. Figure 1 illustrates the amplitudes of the fun-
damental and harmonics out to 6v as a function of the num-
ber of iterations using a second-order perturbation technique
for a single-frequency drive signal at 15 kHz. Figure 1~a!
clearly shows the convergence of the iteration procedure as
the number of stepsN increases from 1 to 100. This conver-
gence characterizes the stability of the perturbation solution.
The bottom portion in Fig. 1~a! illustrates magnified versions
of the asymptotic behavior for the first four frequency com-
ponents. Note that the fundamental amplitude grows as a
function of the number of iterations whereas all harmonics
decrease in amplitude for largerN. This is because the itera-
tive calculation over smaller and smaller steps reduces the
nonlinear correction effects over the total distance. A single
iteration causes too much energy to be transferred to the
harmonics resulting in an exaggerated correction for the fun-
damental source frequency component and generation of har-
monics that is too large. The more intervals we consider, the
more stable the solution will be.

Figure 1~b! provides another view on the harmonic am-
plitude spectra after 1, 2, and 100 iterations. In the case of a
single iteration, we calculate the distortion at a distance of 1
m from the source. Because a second-order perturbation ap-
proximation is used only the second and third harmonic am-
plitudes have nonzero amplitudes which are in this case due
to two and threefold interactions of the source frequency
with itself. Using two iterations, the distorted spectrum is
first calculated at 50 cm from the source resulting in a spec-
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trum consisting of a fundamental tone and its second and
third harmonic. This multifrequency spectrum is then used as
input for the propagation between 50 cm and 1 m, creating a
spectrum of nine components. This two-step calculation
leads to significant corrections on 2v and 3v and to genera-
tion of higher harmonics. Further corrections and additional
harmonics are obtained by increasing the number of itera-

tions to 100~equivalent to calculations every 1 cm! until a
stable solution is reached. In general, by reducing the step-
size and identifying the output of one iteration as the input
for the next iteration, it is possible to retrieve a rich and
stable spectrum with harmonics of much higher order than
the approximation level of the perturbation model considered
in the calculations. This is a great advantage of the method.

B. Influence of source distortion

For small distances~only one iteration! and a single-
frequency input, the analytical form of the solution given by
Eq. ~3! suggests easily verifiable relations for experimental
observations of the second harmonicA2 as a function of
initial amplitude (A2}A1

2), frequency~A2}v2!, and distance
(A2}x).

13,17 At larger distances, these relationships alter
somewhat and become more complicated than simple power
law dependencies.

Similarly, modification of these predictions occur when
a transducer generated second harmonic component is super-
posed on the fundamental frequency signal at the source. An
example is given in Fig. 2 where the predicted dependence of
A2 at some distance from a pure source is compared with the
case of a combined fundamental-second harmonic source
where the amplitude of the second harmonic equals 5% of
the amplitude of the fundamental component. The small sec-
ond harmonic signal riding on top of the fundamental sinu-
soidal wave is taken to be out of phase byp/2. The three
plots in Fig. 2 clearly illustrate that the simple power law
relationships described by Eq.~3! completely vanish when
multiple frequency signals are injected at the source. In this
case, the presence of 5% second harmonic at input changes
the fundamental input amplitude dependence of the mea-
sured displacement amplitudeA2 at 1-m propagation dis-
tance from a square-law to a nearly linear dependence@Fig.
2~a!#. Similarly, the behavior as a function of frequency be-
comes almost constant instead of quadratic@Fig. 2~b!#, and
the distance dependence starts off at the level ofA2 on input
and grows asymptotically toward a linear dependence@Fig.
2~c!#. This result shows that one must be very careful in
determining whether or not the source is contaminated be-
fore drawing conclusions about nonlinearity parameters or
using simple perturbation relations. As also illustrated by
Ten Cateet al.,28 a contaminated source may have major
consequences on the interpretation of spectral ratios.

C. Effects of the level of approximation used in the
perturbation model and the influence of the
nonlinearity parameters

From a theoretical point of view, it is also instructive to
analyze the contribution of each term in Eq.~7! and in like
manner the contribution of each additional nonlinear coeffi-
cient in the stress-strain relation. Figure 3 illustrates the cor-
rections due to a successively increased order of approxima-
tion in the perturbation solution for a fixed set of four
nonzero nonlinearity parameters. Note that an increase of the
approximation level in such a case systematically introduces
a higher-order nonlinearity parameter in the solution. For

FIG. 1. Convergence of spectral contents for increasing number of iterations
(N). Second order perturbation (u5u(0)1u(1)1u(2)); f515 kHz,c052000
m/s,QL560, L51 m, b852100, d8533104; At source:A151.12531026

m. ~a! Overview of the convergence of all harmonics and detailed behavior
of the fundamental, second, third, and fourth harmonics.~b! Total spectrum
for one-step, two-step, and 100-step iterations.
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instance, increasing the level from order 1 (u5u(0)1u(1)) to
order 2(u5u(0)1u(1)1u(2)) introduces the effects ofd8 in
the solution. On the other hand, each extra perturbation term
u(m) ~with m.0! depends on all of the lower-order nonlin-
earity parameters~through the weighting functions!, and
therefore its contribution for different frequency components
can be either negative or positive. Note for instance the de-
crease of the second and third harmonic and the positive

contribution to all higher harmonic amplitudes that arise
when evaluating the 3rd-order approximation. As can be ob-
served in Fig. 3, the effect of adding higher-order contribu-
tions to the theoretical perturbation solution generally lifts up
the ‘‘tail’’ of the amplitude spectrum while causing only
relatively small corrections to the lower harmonics. This re-
sult is significant because it can provide guidance as to
whether or not higher nonlinearity coefficients are required
in the theoretical simulation of a set of experimental data.

In Fig. 4 we plot a related result using the same set of
‘‘linear’’ parameters as in Fig. 3. Here we show the effects
of computing the 4th-order perturbation solution
(u5u(0)1u(1)1u(2)1u(3)1u(4)) for a successively increas-
ing number of nonzero nonlinearity coefficients. The itera-
tion number is fixed at 20. We start with the case where all
coefficients butb8 are zero and proceed by successively add-
ing d8, h8, and j8 contributions. Again we observe that
higher-order nonlinearity coefficients modify the spectrum
most significantly for higher frequency components. Their
contribution can be either positive or negative. Note that the
analytical expression of the 4th-order perturbation solution
assuming thatb8 is the only nonzero nonlinear coefficient is

FIG. 2. Functional dependencies of the displacement amplitude of the sec-
ond harmonic component at 1-m propagation distance from a pure sinu-
soidal source~filled circles! and a superposed (f ,2f )-signal~open circles! in
which A2 at the source equals 5% ofA1 andf25p/2. Second-order pertur-
bation (u5u(0)1u(1)1u(2)); 20 iterations;c052000 m/s, no attenuation;
b85250, d852104. ~a! Dependence on the fundamental amplitude at the
source.~f515 kHz!. ~b! Dependence on the fundamental frequency.~At
sourceA151027 m.! ~c! Dependence on the propagation distance~f515
kHz; At sourceA155.631026 m!.

FIG. 3. Nonlinear spectrum for increased order of approximation of the
perturbation solution:f515 kHz,c052000 m/s,QL560,L51 m,b85210,
d8533102, h8523107, j852331010. At source:A151.12531025 m; 20
iterations.h 1st order:u5u(0)1u(1), 1 2nd order:u5u(0)1u(1)1u(2), 3
3rd order: u5u(0)1u(1)1u(2)1u(3), s 4th order: u5u(0)

1u(1)1u(2)1u(3)1u(4).

FIG. 4. Fourth-order perturbation solution with increasing number of non-
linearity parameters:f515 kHz,c052000 m/s,QL560,L51 m; At source:
A151.12531025 m; 20 iterations.h b85210, d850, h850, j850; 1
b85210, d8533102, h850, j850; 3 b85210, d8533102, h8523107,
j850; s b85210, d8533102, h8523107, j852331010.
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not equivalent to restricting Eq.~7! @or Eq. ~10!# to the first
two terms (u5u(0)1u(1)). b8 feeds into all higher order
terms~u~2!, u~3!, andu~4!! as well. However, due to the itera-
tion procedure there is not much difference in either ap-
proach as the iteration by itself will account for the creation
of higher harmonics proportional to products of powers of
the nonzero nonlinearity parameters in any possible combi-
nation. Thus the fact that Figs. 3 and 4 are almost identical is
not surprising. This result demonstrates that application of
the iteration procedure when using a low level perturbation
solution of orderm with m nonzero nonlinear coefficients is
nearly equivalent to any higher-order approximation that ac-
counts for the samem nonlinearity parameters. In other
words, if only two nonlinearity parameters have to be taken
into account, a second-order perturbation solution in combi-
nation with the iteration procedure will be more than ad-
equate. This conclusion is extremely valuable with respect to
computing theoretical simulations which can be very time
consuming.

D. Introduction of attenuation and the notion of a
local hybrid Q value

Apart from obtaining a rich harmonic spectrum with a
minimum number of nonlinearity parameters, another advan-
tage of the iteration procedure is that it allows us to include
an arbitrary dissipation function accounting for linear attenu-
ation of frequency components at each iteration step. In Eq.
~10! we used the common exponential decay function in
which QL is a frequency independent measure of the linear
attenuation. The attenuation coefficientaL52p f /QLc0 de-
pends linearly on frequency as commonly assumed for most
solids. However, any attenuation law can be substituted27

including aQL function that varies along the propagation
path.

Figure 5 illustrates the effect of high and lowQL on the
spectrum for a drive frequency of 15 kHz at a fixed distance
of 1 m. Due to the introduction of attenuation effects at con-
secutive iteration steps, we observe not only dissipation in
the fundamental frequency component, but also significant
influences on the generated harmonics. For smallQL , we
observe a smaller amount of energy transfer and thus fewer

harmonics. Clearly, knowledge ofQL for a given experiment
is essential when performing theoretical simulations.

Because elastic nonlinearity results in energy being
transferred between frequency components, the combination
of linear dissipation and nonlinear energy mixing introduces
the notion of elastically ‘‘nonlinear’’ attenuation as opposed
to elastically ‘‘linear’’ attenuation. As shown in Fig. 6 non-
linear effects dominate the early wave propagation whereas
linear attenuation takes over at large distances. Because har-
monics are generated in the medium by multiple frequency
coupling, the local hybridQ value (QH) for the nth har-
monic including ‘‘linear’’ and ‘‘nonlinear’’ attenuation,
which we define as

QH
~n!~x!5

QL
~n!~x!•QNL

~n!~x!

QL
~n!~x!1QNL

~n!~x!

5
~nv/2c0!Dx

ln@An~x2Dx!/An~x!#
with Dx small,

~12!

has a distinctive behavior as is illustrated in Fig. 7. As long
as nonlinear effects dominate, the value ofQH is negative for
the frequency components that are being generated.QH goes
asymptotically to2` and jumps to1` at the distance where
nonlinear effects are at their cumulative maximum. This dis-
tance differs for each harmonic. Beyond this critical distance
attenuation effects dominate andQH decreases asymptoti-
cally to the value of the linearQL characteristic for the me-
dium. For the fundamental frequency component a magnified
version of its behavior is shown in the bottom plot.QH starts
off at QL , decreases to a minimum because of the energy
loss to higher harmonics, and then increases again asymptoti-
cally to the medium constantQL at large distances from the
source. The hybridQ valueQH can be translated to a hybrid
attenuation parameteraH by taking the inverse ofQH @Fig.
7~b!#.

E. Conservation of energy requirement

The introduction of attenuation into the model means
that dissipation of energy occurs during propagation. One

FIG. 5. Displacement spectra for high~QL520! and low ~QL5100! linear
attenuation. Second-order perturbation (u5u(0)1u(1)1u(2)); 50 iterations;
f515 kHz, c052000 m/s, L51 m, b852400, d85105; at source:
A151.12531026 m.

FIG. 6. Fundamental and harmonic displacement amplitudes as a function
of distance. Second-order perturbation (u5u(0)1u(1)1u(2)); f515 kHz,
c052000 m/s, QL540, b85243103, d85233107; at source:
A151.12531027 m.
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can ask the question whether this perturbation approach ac-
counts at all for energy conservation in the absence of attenu-
ation, i.e.:

E05 (
n52`

1`

@Vn~0!#25
?

(
n52`

1`

@Vn~L !#25EL . ~13!

Figure 8 provides an answer to this question. The more it-
erations, the more accurately energy conservation is satisfied.
Using only a single step in the calculation, the excess energy
u(EL2E0)/E0u is about 16%. The energy excess decreases
monotonically as the number of iterations is increased. A
two-step calculation cuts it to 6% and at 100 iterations the
error is reduced to 0.01%.

F. Some applications

We emphasize that the theoretical wave propagation
model presented here can be applied to any frequency and
displacement range. Simulations can extend from ultrasonic
acoustic microscopy, over NDE material research in PZT
samples on microscales, to ultrasonic MHz-wave propaga-
tion in fluids and high-intensity low-frequency seismic
waves~Hz range! in Earth materials over several thousands
of kilometers. Characterization and classification of the de-
gree of nonlinearity for fluids and solids can lead to accurate
information concerning consolidation and saturation condi-
tions within the medium as well as predictions about symp-
toms of fatigue damage. The more compliant features that
exist in a material~microcracks, grain boundaries, and joints!
the higher the nonlinear response of the material will be.
Because experiments performed by our group indicate that
Earth materials are highly nonlinear,14,17,18we believe that
considerable amounts of energy are transferred from the
source frequency spectrum to higher and lower frequencies
during seismic events. Recently this hypothesis has been
confirmed by observations of Beresnev and Wen.21 Analysis
of detected spectra at different locations could be used to
more accurately model explosion and earthquake sources.

To date, we understand much in terms of basic nonlinear
phenomena. Various theoretical approaches which are fairly
sophisticated have also been developed.9–11,19,20However,
there have been no real breakthroughs in nonlinear acoustic
diagnostic methods for Earth materials because the science
of nonlinear elasticity has just arrived at the point where it is
now ready to address practical issues. For example, in anal-
ogy with ocean acoustic tomography22–23the construction of
a parametric array in the Earth may signify a major innova-
tion for seismology. A parametric array is created when two
collimated, high strain amplitude sound waves of different

FIG. 7. Behavior of the local hybrid attenuation@Eq. ~12!# ~a! in terms ofQ,
~b! in terms ofa. Second-order perturbation (u5u(0)1u(1)1u(2)); f515
kHz, c052000 m/s, QL540, b85243103, d85233107. At source:
A151.12531027 m.

FIG. 8. Relative error~%! of the input–output energy balance as a function
of the number of iterations in the absence of attenuation. Second-order per-
turbation (u5u(0)1u(1)1u(2)); f515 kHz, c052000 m/s, L51 m,
b85243103, d85233107; At source:A151.12531027 m.

3342 3342J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 Koen Van Den Abeele: Pulsed wave propagation

Downloaded 03 Jul 2012 to 192.12.184.7. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



~but close! frequencies are driven simultaneously. The waves
interact nonlinearly and generate a frequency at the differ-
ence between the two primary wave frequencies. Because
this low-frequency wave is nonlinearly generated inside the
medium, it does not have the unfavorable spreading proper-
ties characteristic to low-frequency beams generated by finite
size transducers. The difference frequency signal is fairly
well collimated and can be used for transmission over a long
path length because it is less attenuated. A simulation using
the theoretical framework presented here can give a rough
idea of the efficiency of difference frequency collimated
beam generation in rock-type materials where values of the
nonlinearity parameters can be considerably large. An ex-
ample is given in Fig. 9. The source is composed of two
equal amplitude frequency components having a difference
of 5 kHz. While propagating in a nonlinear and dissipative
medium, harmonics at all possible sum and difference fre-
quencies are generated. However, due to the increase of at-
tenuation with frequency, only the two source frequency
components and the difference frequency are detected at a
distance of 1 m. As seen in this example, the amplitude of
the 5-kHz component can be comparable with the resultant
nonlinearly attenuated amplitudes of the former source. Ide-
ally one would use larger source frequencies to create the
parametric array~e.g., 495 and 500 kHz!, however, the itera-
tive procedure requires extensive computer memory and
CPU time which presently places limitations on the theoreti-
cal simulation.

III. CONCLUSION

From Green’s function theory and perturbation methods
a general expression was derived for describing the nonlinear
interaction of frequency components in arbitrary pulsed elas-
tic waves along their propagation path in an infinite medium.
Elastic nonlinearity is inserted into the wave equation by
assuming a polynomial expansion of the stress-strain rela-
tion. The expansion was carried out beyond the second non-
linear term to describe materials with extreme elastic nonlin-
ear behavior. Dissipation can be accounted for due to an
iterative implementation of the general expression. The 1-D
propagation model can be applied for a broad frequency and
amplitude range.

A fundamental question is however if a polynomial ex-
pansion of the stress-strain relation is a valid assumption.
Hysteretic materials for instance usually have amplitude de-
pendent bi-functional and nonlinear stress-strain curves
which complicate the wave propagation model tremendously
due to the presence of discontinuous coefficients and the
property of discrete memory.9 Our group is currently work-
ing on a model combining nonlinear wave propagation and
hysteresis effects. Already in 1988 Nazarovet al.10 realized a
discontinuous model was important. However, their stress
deformation model should be modified to accommodate re-
cent observations.19–20
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APPENDIX

If Vn(x0) denotes thenth frequency component of the
particle velocity spectrum at distancex0, the distortion over
a distance x further along the propagation path can be calcu-
lated as follows:

Vn~x01x!5Vn
~0!~x0 ;x!1Vn

~1!~x0 ;x!1Vn
~2!~x0 ;x!

1Vn
~3!~x0 ;x!1Vn

~4!~x0 ;x!, ~A1!

where themth term in the perturbation solution„Vn
(m)(x0 ;x)…

is given by

Vn
~m!~x0 ;x!5 i mnv0

x

uxu (
l1 ,...,lm52`

1`

V@n2(
j51
m l j #

~x0!

3Vl1
~x0!•••Vlm

~x0!

•(
j50

m

Wj
~m!S nv0 ;n2(

j51

m

l j ,l 1 ,...,l mD •uxu j .

~A2!

The coefficientsWj
(m)(v; l 0 ,l 1 ,...,l m) satisfy following rules

~m is the order of perturbation;j ,l 0 ,l 1 ,...,l m all are integer
summation indices; andv is the independent variable!:

FIG. 9. Simulation of the parametric array principle in highly nonlinear
media. Second-order perturbation (u5u(0)1u(1)1u(2)); 10 iterations;
c052000 m/s,L51 m,QL540,b8543103, d8533107. At source:f 10550
kHz, A1051.031028 m, f1050, and f 11555 kHz, A1151.031028 m,
f1152p/2.
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Wj
~m!~v; l 0 ,l 1 ,...,l m![0 for j.m ~A3!

W0
~0!~v; l 0!5 1/v

W0
~m!~v; l 0 ,l 1 ,...,l m![0 for mÞ0

~A4!

W1
~1!~v; l 0 ,l 1!5b8 A1@0,0#~v; l 0 ,l 1! ~A5!

W1
~2!~v; l 0 ,l 1 ,l 2!52b8 A1@0,1#~v; l 0 ,l 1 ,l 2!1d8 A1@0,0,0#~v; l 0 ,l 1 ,l 2!

W2
~2!~v; l 0 ,l 1 ,l 2!52b8 A2@0,1#~v; l 0 ,l 1 ,l 2! ~A6!

W1
~3!~v; l 0 ,l 1 ,l 2 ,l 3!52b8 A1@0,2#~v; l 0 ,l 1 ,l 2 ,l 3!1b8 A1@1,1#~v; l 0 ,l 1 ,l 2 ,l 3!13d8 A1@0,0,1#~v; l 0 ,l 1 ,l 2 ,l 3!

1h8 A1@0,0,0,0#~v; l 0 ,l 1 ,l 2 ,l 3!,

W2
~3!~v; l 0 ,l 1 ,l 2 ,l 3!52b8 A2@0,2#~v; l 0 ,l 1 ,l 2 ,l 3!1b8 A2@1,1#~v; l 0 ,l 1 ,l 2 ,l 3!13d8 A2@0,0,1#~v; l 0 ,l 1 ,l 2 ,l 3!,

W3
~3!~v; l 0 ,l 1 ,l 2 ,l 3!52b8 A3@0,2#~v; l 0 ,l 1 ,l 2 ,l 3!1b8 A3@1,1#~v; l 0 ,l 1 ,l 2 ,l 3!, ~A7!

W1
~4!~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!52b8 A1@0,3#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!12b8 A1@1,2#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!

13d8 A1@0,0,2#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!13d8 A@0,1,1#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!

14h8 A1@0,0,0,1#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!1j8 A1@0,0,0,0,0#~v; l 0 ,l 1 ,l 2 ,l 3 ,l 4!,

W2
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Finally, the interaction weighting functions used in the text@Eq. ~10!# are defined by

Wm~n,l 1 ,...,l m!5(
j50

m
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~m!S nv0 ;n2(
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